Average unit cell for Penrose tiling and its Gaussian approximation.

نویسندگان

  • Janusz Wolny
  • Bartłomiej Kozakowski
چکیده

In this paper, the average unit cell for a quasicrystal is constructed by a statistical approach. For the Penrose tiling, it is shown that such a unit cell is fully equivalent to the oblique projection of the atomic surface onto physical space. The obtained statistical distributions can be easily extended to imperfect structures by using a Gaussian approximation. This leads to simple analytical expressions for diffraction intensities, which can be very useful in structure refinement.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

a family of recompositions of the penrose aperiodic protoset and its dynamic properties

This paper examines a recomposition of the rhombic Penrose aperiodic protoset due to Robert Ammann. We show that the three prototiles that result from the recomposition form an aperiodic protoset in their own right without adjacency rules and that every tiling admitted by this protoset (here called an Ammann tiling) is mutually locally derivable with a Penrose tiling. Although these Ammann tili...

متن کامل

Di¤usive limits on the Penrose tiling

In this paper random walks on the Penrose tiling and on its local perturbation are investigated. Heat kernel estimates and the invariance principle are shown proving Domokos Szász’s conjectures[11].

متن کامل

Penrose tiling - Wikipedia, the free encyclopedia

A Penrose tiling is a nonperiodic tiling generated by an aperiodic set of prototiles named after Roger Penrose, who investigated these sets in the 1970s. Because all tilings obtained with the Penrose tiles are non-periodic, Penrose tilings are considered aperiodic tilings.[1] Among the infinitely many possible tilings there are two that possess both mirror symmetry and fivefold rotational symme...

متن کامل

Penrose Tilings by Pentacles can be 3–Colored

There are many aperiodic tilings of the plane. The chromatic number of a tiling is the minimum number of colors needed to color the tiles in such a way that every pair of adjacent tiles have distinct colors. In this paper the problem is solved for the last Penrose tiling for which the problem remained unsolved, the Penrose tilings by pentacles (P1). So we settle on the positive the conjecture f...

متن کامل

Investigations of Game of Life cellular automata rules on Penrose Tilings: lifetime and ash statistics

Conway’s Game of Life rules can be applied to Cellular Automata (CAs) running on aperiodic grids, namely Penrose tilings. Here we investigate the result of running such CAs from random initial conditions. This requires development of a Penrose tiling algorithm suitable for CA experiments, in particular, a tiling that can be lazily expanded as CA activity reaches an edge. We describe such an alg...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Acta crystallographica. Section A, Foundations of crystallography

دوره 59 Pt 1  شماره 

صفحات  -

تاریخ انتشار 2003